Section 5.2 Integration by "u" substitution

These are the only rules for integration that we use in our class. We were able to rewrite all the problems in section 5.1 to fit one or more of the rules using basic Algebra.

The problems in section 5.2 will also need to be rewritten so that we can apply the integration rules we learned in section 5.1. The rewriting is a little trickier. The technique we will use to rewrite each problem so that it we can integrate is called $\mathrm{u}-$ substitution.

Basic Integration Rules

Power Rule: $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $n \neq-1$

Integral of a constant Rule: $\int a d x=a x+$ C (a is any real number)
"ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$
" e " Rule $\int e^{x} d x=e^{x}+C$

C represents any real number

$$
\begin{aligned}
& \text { Properties of integrals } \\
& \int(f(x)+g(x)) d x=\int f(x) d x \quad+\int g(x) d x \\
& \int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x \\
& \int a f(x) d x=a \int f(x) d x
\end{aligned}
$$

Example: Rewrite a problem that has a parenthesis with an exponent using u - substitution, then integrate to find the answer.
$\int 10 x\left(5 x^{2}-4\right)^{5} d x$
Rewrite the problem so that the parenthesis is first:
$=\int\left(5 x^{2}-4\right)^{5} 10 x d x$
Next: let $u=$ inside of the parenthesis
let $u=5 x^{2}-4$
Rewrite the problem so that the "parenthesis is changed to an " u "
$=\int u^{5} 10 x d x$
Next find $\frac{d u}{d x}$
$u=5 x^{2}-4$
$\frac{d}{d x} u=\frac{d}{d x} 5 x^{2}-\frac{d}{d x} 4$
$\frac{d u}{d x}=10 x$
Multiply by $d x$ to clear the fraction.
$d x \frac{d u}{d x}=10 x d x$
$d u=10 x d x$

Next replace $10 x d x$ with $d u$
$=\int u^{5} 10 x d x=\int u^{5} d u$
Next integrate: use Power Rule
$=\frac{1}{6} u^{6}+C$
Last change u to $5 x^{2}-4$ to get the answer
Answer: $\frac{1}{6}\left(5 x^{2}-4\right)^{6}+C$

Example: Rewrite a problem that has a parenthesis with an exponent using u - substitution, then integrate to find the answer.
$\int 20 x\left(5 x^{2}-4\right)^{5} d x$
Rewrite the problem so that the parenthesis is first:
$=\int\left(5 x^{2}-4\right)^{5} 20 x d x$
Next: let $u=$ inside of the parenthesis
let $u=5 x^{2}-4$

Rewrite the problem so that the "parenthesis is changed to an " u "
$=\int u^{5} 20 x d x$
Next find $\frac{d u}{d x}$
$u=5 x^{2}-4$
$\frac{d}{d x} u=\frac{d}{d x} 5 x^{2}-\frac{d}{d x} 4$
$\frac{d u}{d x}=10 x$
Multiply by $d x$ to clear the fraction.
$d x \frac{d u}{d x}=10 x d x$
$d u=10 x d x$

This is not good enough. I need to replace $20 x d x$.

Multiply by 2.
$2 d u=2 * 10 x d x$
$2 d u=20 x d x$

Next replace $20 x d x$ with $2 d u$
$=\int u^{5} 20 x d x=\int u^{5} 2 d u=\int 2 u^{5} d u$
Rewrite using: $\int a f(x) d x=a \int f(x) d x$
$=2 \int u^{5} d u$
Next integrate: use Power Rule:
$=2 * \frac{1}{6} u^{6}+C$
$=\frac{1}{3} u^{6}+C$
Last change u to $5 x^{2}-4$ to get the answer
Answer: $\frac{1}{3}\left(5 x^{2}-4\right)^{6}+C$

Example: Rewrite a problem that has an " e "using u - substitution, then integrate to find the answer.

Find: $\int 12 x^{2} e^{4 x^{3}} d x$
Rewrite the problem with the e first.
$=\int e^{4 x^{3}} 12 x^{2} d x$
Let $u=$ exponent of the e
Let $u=4 x^{3}$

Rewrite the problem with u in the exponent of the e
$=\int e^{u} 12 x^{2} d x$
Next find $\frac{d u}{d x}$
$u=4 x^{3}$
$\frac{d}{d x} u=\frac{d}{d x} 4 x^{3}$
$\frac{d u}{d x}=12 x^{2}$
Multiply by $d x$ to clear the fraction.
$d x \frac{d u}{d x}=d x * 12 x^{2}$
$d u=12 x^{2} d x$

Next replace $12 x^{2} d x$ with $d u$
$=\int e^{u} 12 x^{2} d x$
$=\int e^{u} d u$
Integrate: Use " e " Rule $\int e^{x} d x=e^{x}+C$
$=e^{u}+C$
Replace the u with $4 x^{3}$ and write answer
Answer: $e^{4 x^{3}}+C$

Example: Rewrite a problem that has an "e"using u - substitution, then integrate to find the answer.

Find: $\int 2 x^{2} e^{4 x^{3}} d x$

Rewrite the problem with the e first.
$=\int e^{4 x^{3}} 2 x^{2} d x$
Let $u=$ exponent of the e
Let $u=4 x^{3}$
Rewrite the problem with u in the exponent of the e
$=\int e^{u} 2 x^{2} d x$
Next find $\frac{d u}{d x}$
$u=4 x^{3}$
$\frac{d}{d x} u=\frac{d}{d x} 4 x^{3}$
$\frac{d u}{d x}=12 x^{2}$
Multiply by $d x$ to clear the fraction.
$d x \frac{d u}{d x}=d x * 12 x^{2}$
$d u=12 x^{2} d x$

Multiply by $\frac{1}{6}$ to get a match
of what is left unchanged inside the integral
$d u=12 x^{2} d x$
$\frac{1}{6} d u=\frac{1}{6} * 12 x^{2} d x$
$\frac{1}{6} d u=2 x^{2} d x$
Replace the $2 x^{2} d x$ with $\frac{1}{6} d u$
$=\int e^{u} 2 x^{2} d x$
$=\int e^{u} \frac{1}{6} d u=\int \frac{1}{6} e^{u} d u$
Rewrite: using $\int a f(x) d x=a \int f(x) d x$
$=\frac{1}{6} \int e^{u} d u$
Integrate: Use " e " Rule $\int e^{x} d x=e^{x}+C$
$=\frac{1}{6} e^{u}+C$
Replace the u with $4 x^{3}$ and write answer
Answer: $\frac{1}{6} e^{4 x^{3}}+C$

Example: Rewrite a problem that has a fraction using u substitution, then integrate to find the answer.
$\int \frac{16}{4 x-3} d x$

First rewrite the problem so that it has a negative exponent instead of a fraction.
$\int \frac{16}{4 x-3} d x=\int \frac{16}{(4 x-3)^{1}} d x=\int(4 x-3)^{-1} 16 d x$
(it saves a step to write the parenthesis first)
let $u=$ inside of the parenthesis
$u=4 x-3$
Rewrite the problem so that the "parenthesis is changed to an " u "

$$
\begin{aligned}
& \int(4 x-3)^{-1} 16 d x \\
& =\int u^{-1} 16 d x
\end{aligned}
$$

Next find $\frac{d u}{d x}$
$u=4 x-3$
$\frac{d}{d x} u=\frac{d}{d x} 4 x-\frac{d}{d x} 3$
$\frac{d u}{d x}=4$

Multiply by $d x$ to clear the fraction.
$d x \frac{d u}{d x}=d x * 4$
$d u=4 d x$
the Algebra give me $d u=4 d x$
But I need to replace $16 x d x \quad \int u^{-1} 16 d x$

Multiply by 4
$4 d u=4 * 4 d x$
$4 d u=16 d x$

Replace $16 d x$ with $4 d u$
$\int u^{-1} 16 d x=\int u^{-1} 4 d u=\int 4 u^{-1} d u$
Rewrite: using $\int a f(x) d x=a \int f(x) d x$
$=4 \int u^{-1} d u$
Integrate using:
\ln " Rule: $\left\{\int x^{-1} d x=\ln |x|+C\right.$
$=4 \ln |u|+C$
Change the u to $4 x-3$ and write the answer
Answer: $4 \ln |4 x-3|+C$
\#1 - 12: Use u-substitution to evaluate the indefinite integrals. (Minimum homework all odds)

1) $\int 2 x\left(x^{2}+5\right)^{4} d x$
2) $\int 3 x^{2}\left(x^{3}-4\right)^{5} d x$

Rewrite the problem so that the parenthesis is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Next integrate: use Power Rule:

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad \text { provided } n \neq-1
$$

Last change u back to get the answer
answer: $\int 3 x^{2}\left(x^{3}-4\right)^{5} d x=\frac{1}{6}\left(x^{3}-4\right)^{6}+C$
3) $\int(2 x+3)\left(x^{2}+3 x-4\right)^{3} d x$
4) $\int(8 x+2)\left(4 x^{2}+2 x-7\right)^{5} d x$

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Next integrate: use Power Rule:

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \text { provided } n \neq-1
$$

Last change u back to get the answer
answer: $\int(8 x+2)\left(4 x^{2}+2 x-7\right)^{5} d x=\frac{1}{6}\left(4 x^{2}+2 x-7\right)^{6}+C$
5) $\int 2 x e^{x^{2}} d x$
6) $\int 3 x^{2} e^{x^{3}} d x$

Rewrite the problem so that the " e " is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to get the answer
answer: $\int 3 x^{2} e^{x^{3}} d x=e^{x^{3}}+C$
7) $\int(2 x+5) e^{x^{2}+5 x} d x$
8) $\int\left(6 x^{2}+8 x\right) e^{2 x^{3}+4 x^{2}+3} d x$

Rewrite the problem so that the " e " is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Last change u back to get the answer
answer: $\int\left(6 x^{2}+8 x\right) e^{2 x^{3}+4 x^{2}+3} d x=e^{2 x^{3}+4 x^{2}+3}+C$
9) $\int \frac{4}{4 x-7} d x$
10) $\int \frac{10}{10 x+3} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.
Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$
Last change u back to get the answer
answer: $\int \frac{10}{10 x+3} d x=\ln |10 x+3|+C$
11) $\int \frac{2 x+3}{x^{2}+3 x-5} d x$
12) $\int \frac{6 x+9}{3 x^{2}+9 x-2} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an "u"

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's
Next integrate: "ln" Rule: $\left\{\begin{array}{l}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer
answer: $\int \frac{6 x+9}{3 x^{2}+9 x-2}=\ln \left|3 x^{2}+9 x-2\right|+C$
\#13-24: Use u-substitution to evaluate the indefinite integrals.
13) $\int 6 x\left(x^{2}+5\right)^{4} d x$
14) $\int 15 x^{2}\left(x^{3}-4\right)^{5} d x$

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: Power Rule:

Last change u back to get the answer
Answer: $\int 15 x^{2}\left(x^{3}-4\right)^{5} d x=\frac{5}{6}\left(x^{3}-4\right)^{6}+C$
15) $\int(4 x+6)\left(x^{2}+3 x-4\right)^{3} d x$
16) $\int(32 x+8)\left(4 x^{2}+2 x-7\right)^{5} d x$

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match

Next replace to make problem only have u's

Last change u back to get the answer

Answer: $\int(32 x+8)\left(4 x^{2}+2 x-7\right)^{5} d x=\frac{2}{3}\left(4 x^{2}+2 x-7\right)^{6}+C$
17) $\int 10 x e^{x^{2}} d x$
18) $\int 15 x^{2} e^{x^{3}} d x$

Rewrite the problem so that the " e " is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to get the answer
answer: $\int 15 x^{2} e^{x^{3}} d x=5 e^{x^{3}}+C$
19) $\int(8 x+20) e^{x^{2}+5 x} d x$
20) $\int\left(18 x^{2}+24 x\right) e^{2 x^{3}+4 x^{2}+3} d x$

Rewrite the problem so that the " e " is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to get the answer
answer: $\int\left(18 x^{2}+24 x\right) e^{2 x^{3}+4 x^{2}+3} d x=3 e^{2 x^{3}+4 x^{2}+3}+C$
21) $\int \frac{8}{4 x-7} d x$
22) $\int \frac{30}{10 x+3} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer
answer: $\int \frac{30}{10 x+3} d x=3 \ln |10 x+3|+C$
23) $\int \frac{16 x+24}{x^{2}+3 x-5}$
24) $\int \frac{42 x+63}{3 x^{2}+9 x-2}$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer
answer: $\int \frac{42 x+63}{3 x^{2}+9 x-2}=7 \ln \left|3 x^{2}+9 x-2\right|+C$
\#25-32: Use u-substitution to evaluate the indefinite integrals.
25) $\int 2 x\left(4 x^{2}+5\right)^{4} d x$
26) $\int 3 x^{2}\left(5 x^{3}-4\right)^{5} d x$

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: Power Rule:

Last change u back to get the answer
answer: $\int 3 x^{2}\left(5 x^{3}-4\right)^{5} d x=\frac{1}{30}\left(5 x^{3}-4\right)^{6}+C$
27) $\int(2 x+3)\left(2 x^{2}+6 x-1\right)^{3} d x$
28) $\int(4 x+1)\left(4 x^{2}+2 x-7\right)^{5} d x$

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: Power Rule:

Last change u back to get the answer
answer $\int(4 x+1)\left(4 x^{2}+2 x-7\right)^{5} d x=\frac{1}{12}\left(4 x^{2}+2 x-7\right)^{6}+C$
29) $\int \frac{2}{4 x-7} d x$
30) $\int \frac{5}{10 x+3} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer
answer: $\int \frac{5}{10 x+3} d x=\frac{1}{2} \ln |10 x+3|+C$
31) $\int \frac{2 x+2}{3 x^{2}+6 x-5} d x$
32) $\int \frac{2 x+3}{3 x^{2}+9 x-2} d x$

Rewrite so that the problem is not a fraction, and has a parenthesis with a -1 exponent

Rewrite the problem so that the parenthesis with the exponent is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis with the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

This is not good enough. Multiply to make a perfect match.

Next replace to make problem only have u's

Next integrate: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$

Last change u back to get the answer
answer: $\int \frac{2 x+3}{3 x^{2}+9 x-2}=\frac{1}{3} \ln \left|3 x^{2}+9 x-2\right|+C$

